1,051 research outputs found

    Time Development of Exponentially Small Non-Adiabatic Transitions

    Full text link
    Optimal truncations of asymptotic expansions are known to yield approximations to adiabatic quantum evolutions that are accurate up to exponentially small errors. In this paper, we rigorously determine the leading order non--adiabatic corrections to these approximations for a particular family of two--level analytic Hamiltonian functions. Our results capture the time development of the exponentially small transition that takes place between optimal states by means of a particular switching function. Our results confirm the physics predictions of Sir Michael Berry in the sense that the switching function for this family of Hamiltonians has the form that he argues is universal

    The Langevin Equation for a Quantum Heat Bath

    Get PDF
    We compute the quantum Langevin equation (or quantum stochastic differential equation) representing the action of a quantum heat bath at thermal equilibrium on a simple quantum system. These equations are obtained by taking the continuous limit of the Hamiltonian description for repeated quantum interactions with a sequence of photons at a given density matrix state. In particular we specialise these equations to the case of thermal equilibrium states. In the process, new quantum noises are appearing: thermal quantum noises. We discuss the mathematical properties of these thermal quantum noises. We compute the Lindblad generator associated with the action of the heat bath on the small system. We exhibit the typical Lindblad generator that provides thermalization of a given quantum system.Comment: To appear in J.F.

    Determination of Non-Adiabatic Scattering Wave Functions in a Born-Oppenheimer Model

    Full text link
    We study non--adiabatic transitions in scattering theory for the time dependent molecular Schroedinger equation in the Born--Oppenheimer limit. We assume the electron Hamiltonian has finitely many levels and consider the propagation of coherent states with high enough total energy. When two of the electronic levels are isolated from the rest of the electron Hamiltonian's spectrum and display an avoided crossing, we compute the component of the nuclear wave function associated with the non--adiabatic transition that is generated by propagation through the avoided crossing. This component is shown to be exponentially small in the square of the Born--Oppenheimer parameter, due to the Landau-Zener mechanism. It propagates asymptotically as a free Gaussian in the nuclear variables, and its momentum is shifted. The total transition probability for this transition and the momentum shift are both larger than what one would expect from a naive approximation and energy conservation

    Adiabatic Evolution for Systems with Infinitely many Eigenvalue Crossings

    Full text link
    We formulate an adiabatic theorem adapted to models that present an instantaneous eigenvalue experiencing an infinite number of crossings with the rest of the spectrum. We give an upper bound on the leading correction terms with respect to the adiabatic limit. The result requires only differentiability of the considered spectral projector, and some geometric hypothesis on the local behaviour of the eigenvalues at the crossings

    General Adiabatic Evolution with a Gap Condition

    Full text link
    We consider the adiabatic regime of two parameters evolution semigroups generated by linear operators that are analytic in time and satisfy the following gap condition for all times: the spectrum of the generator consists in finitely many isolated eigenvalues of finite algebraic multiplicity, away from the rest of the spectrum. The restriction of the generator to the spectral subspace corresponding to the distinguished eigenvalues is not assumed to be diagonalizable. The presence of eigenilpotents in the spectral decomposition of the generator forbids the evolution to follow the instantaneous eigenprojectors of the generator in the adiabatic limit. Making use of superadiabatic renormalization, we construct a different set of time-dependent projectors, close to the instantaneous eigeprojectors of the generator in the adiabatic limit, and an approximation of the evolution semigroup which intertwines exactly between the values of these projectors at the initial and final times. Hence, the evolution semigroup follows the constructed set of projectors in the adiabatic regime, modulo error terms we control

    Fundamental solution method applied to time evolution of two energy level systems: exact and adiabatic limit results

    Get PDF
    A method of fundamental solutions has been used to investigate transitions in two energy level systems with no level crossing in a real time. Compact formulas for transition probabilities have been found in their exact form as well as in their adiabatic limit. No interference effects resulting from many level complex crossings as announced by Joye, Mileti and Pfister (Phys. Rev. {\bf A44} 4280 (1991)) have been detected in either case. It is argued that these results of this work are incorrect. However, some effects of Berry's phases are confirmed.Comment: LaTeX2e, 23 pages, 8 EPS figures. Style correcte

    Semiclassical Dynamics with Exponentially Small Error Estimates

    Full text link
    We construct approximate solutions to the time--dependent Schr\"odinger equation i(ψ)/(t)=(2)/2Δψ+Vψi \hbar (\partial \psi)/(\partial t) = - (\hbar^2)/2 \Delta \psi + V \psi for small values of \hbar. If VV satisfies appropriate analyticity and growth hypotheses and tT|t|\le T, these solutions agree with exact solutions up to errors whose norms are bounded by Cexpγ/C \exp{-\gamma/\hbar}, for some CC and γ>0\gamma>0. Under more restrictive hypotheses, we prove that for sufficiently small T,tTlog()T', |t|\le T' |\log(\hbar)| implies the norms of the errors are bounded by Cexpγ/σC' \exp{-\gamma'/\hbar^{\sigma}}, for some C,γ>0C', \gamma'>0, and σ>0\sigma>0

    A Time-Dependent Born-Oppenheimer Approximation with Exponentially Small Error Estimates

    Full text link
    We present the construction of an exponentially accurate time-dependent Born-Oppenheimer approximation for molecular quantum mechanics. We study molecular systems whose electron masses are held fixed and whose nuclear masses are proportional to ϵ4\epsilon^{-4}, where ϵ\epsilon is a small expansion parameter. By optimal truncation of an asymptotic expansion, we construct approximate solutions to the time-dependent Schr\"odinger equation that agree with exact normalized solutions up to errors whose norms are bounded by \ds C \exp(-\gamma/\epsilon^2), for some C and γ>0\gamma>0

    Exponentially Accurate Semiclassical Dynamics: Propagation, Localization, Ehrenfest Times, Scattering and More General States

    Full text link
    We prove six theorems concerning exponentially accurate semiclassical quantum mechanics. Two of these theorems are known results, but have new proofs. Under appropriate hypotheses, they conclude that the exact and approximate dynamics of an initially localized wave packet agree up to exponentially small errors in \hbar for finite times and for Ehrenfest times. Two other theorems state that for such times the wave packets are localized near a classical orbit up to exponentially small errors. The fifth theorem deals with infinite times and states an exponentially accurate scattering result. The sixth theorem provides extensions of the other five by allowing more general initial conditions
    corecore